Definition
$$f: E \mapsto E'$$
, f is uniformly
continuous if $\forall E > 0$, $\exists S > 0$ such that
 $d(x,y) < \delta \Rightarrow d(f(x), f(y)) < E$.

Remark:
$$\delta$$
 is independent of the choice of x
Example: (1) $f(x) = 3x$
Lot $\varepsilon > 0$, $\delta = \frac{\varepsilon}{3}$
 $|x-y| < \delta \implies |f(x) - f(y)| = 3|x-y| < 3\delta = \varepsilon$
So, $f(x)$ is uniformly continuous

(2) $f(x) = x^2$ is continuous but not uniformly continuous. proof: Assume $x > \delta$ and $|x - y| < \delta$, $|f(x) - f(y)| = |x^2 - y^2| = |x - y| \cdot |x + y|$ $|x - y| (2x - \delta)$ Let E > 0, $\delta > 0$. Select $y = x + \frac{\delta}{2}$,

then
$$|f(x) - f(y)| = |x - y| |x + y|$$

 $= \frac{1}{2} (2x + \frac{9}{2})$
 $> \delta x$
If $x > \frac{2}{6}$, $|f(x) - f(y)| > \epsilon$, even
though $|x - y| = \frac{9}{2} < \delta$.

Remark.
$$f(x)$$
 is uniformly continuous
 $\Rightarrow f'(x)$ is bouncled.
 $|f(x) - f(y)| = f(t) |x - y|$, $t \in [x, y]$.

(3)
$$f(x) = \sqrt{x}$$
, $f: [0, +\infty) \mapsto [0, +\infty)$
is uniformly continuous.
 $proof:$ Let $\varepsilon > 0$,
 $|\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} \le \frac{|x - y|}{\sqrt{x - y} + \sqrt{x + y}}$
 $= \frac{1}{2}\sqrt{|x - y|} < \varepsilon$.
if $\delta = 4\varepsilon^2$.

Obs: Uniformly continuous
$$\Rightarrow$$
 continuous
Theorem: $f: E \mapsto E'$, E is compact.
 f continuous \Leftrightarrow f uniformly continuous.
 $proof:$ Lot $E > 0$, $\forall x \in E$, $\exists \delta_x > 0$
s.t. $f(B_{\delta_x}(x)) \subset B_{\frac{x}{2}}(f(x))$
so, $E = \bigcup B_{\delta_x}(x)$.
Since E is compact. $\exists x_1, ..., x_n$, s.t.
 $E = \bigcup B_{\frac{\delta_x}{2}}(x_i)$
Select $\delta = \min_{i=1}^{r} \frac{\delta x_i}{2}, ..., \frac{\delta x_n}{2}$.
Lot $y, z \in E$, s.t. $d(y, z) < \delta$.
so, $y \in B_{\frac{\delta_x}{2}}(X_k)$
since $cl(y, z) < \delta \le \frac{\delta x_k}{2}$
 $d(x_k, z) \le d(x_k, y) + d(y, z)$
i.e. $z \in B_{\delta x_k}(X_k)$. $y \in B_{\delta x_k}(X_k) < B_{\delta x_k}(X_k)$.

Since
$$f$$
 is continuous. f is continuous at \mathcal{X}_{k}
 $\Rightarrow f(B_{\delta x k}(\mathcal{X}_{k})) \subset B_{\mathcal{E}}(f(\mathcal{X}_{k}))$
so, $d(f(y), f(z)) \leq d(f(y), f(\mathcal{X}_{k}))$
 $+ d(f(\mathcal{X}_{k}), f(z))$
 $< \frac{q}{2} + \frac{q}{2} = \mathcal{E}.$
Example $f(x) = \int x \sin x, \quad x \in (0, 1]$
 $0, \quad x = 0$
is uniformly continuous.
Proof: $(f(x)) = continuous$

) [0,1] is closed and bounded
$$\Rightarrow$$
 [0,1] is compact.

and both
$$f^{-1}(U_1')$$
 and $f^{-1}(U_2')$ are open.
So, $f^{-1}(U_1')$ is also clased (its
compliment $f^{-1}(U_2')$ is open).

Since E is connected,
$$f'(u_i)$$
 is either
E or $\not >$.
If $f'(u_i) = E$, then $f(E) \subset U_i'$.
If $f'(u_i) = E$, then $f(E) \subset U_2'$.
Thus, $f(E)$ is also connected.

Corollary:
$$f:[a,b] \mapsto \mathbb{R}$$
, f continuous.
Assume $f(a) < f(b)$, Let $\gamma \in (f(a), f(b))$
then $\exists C \in (a,b) \text{ s.t. } f(c) = \gamma$.
proof: $U_1 = \{ y \in \mathbb{R} : y > \eta \}$ open
 $U_2 = \{ y \in \mathbb{R} : y < \gamma \}$ open.
 $\exists f(a) \in U_1 \text{ ond } f(b) \in U_2$.

cand
$$U_1 \cap U_2 = \emptyset$$
.

$$\begin{cases} f([a,b]) \cap U_1 \neq \emptyset \\ f([a,b]) \cap U_2 \neq \emptyset. \end{cases}$$
but $[a,b]$ connected \Longrightarrow $f([a,b])$ connected.

$$f([a,b]) \notin U_1 \perp U_2$$
Then, $\exists c s.t. f(c) \notin U_1 \perp U_2$
Thus, $f(c) = \gamma$.

Lemma:
$$X, Y \in \mathbb{R}^{n}$$
, $f: [o, 1] \mapsto \mathbb{R}^{n}$
 $f(t) = X + t(Y - X)$ line segment between
 $f(t) = f(t) = X + t(Y - X)$ word Y .
 $\implies f$ is continuous.
 $proof$. Let $t, s \in [o, 1]$.
 $d(f(t) - f(s)) = |t-s| \cdot \Lambda (Y_{1} - X_{1})^{2} + \dots + (Y_{n} - X_{n})^{2}$
 $select \delta = \frac{e}{k}$.

Lemma:
$$Sxy = f([0,1])$$
 where
 $f(t) = x + t(y-x)$. Sxy is connected.
proof: f is continuous
 $[0,1]$ is connected $j \Rightarrow f([0,1])$
is connected.

Proposition In
$$\mathbb{R}^{n}$$
, $Br(\alpha)$ is connected.
 $\forall r > 0$ and $x \in \mathbb{R}^{n}$.
proof: (1) $y \in Br(\alpha) \Rightarrow Sxy \subset Br(\alpha)$.
(2) $Br(\alpha) = \bigcup_{\substack{y \in Br(\alpha) \\ y \in Br($

Foch
$$Sxy$$
 is connected,
 $x \in Sxy$, $\forall y \in Br(x)$
Since the union of connected sets that
share a common point is connected.
 $\Rightarrow Br(x)$ is connected.